Seminario di Algebra
e Teoria dei Numeri
del Dipartimento di Matematica dell'Università di Torino
Questa pagina registra l'attività del Seminario.
Pagina mantenuta da Andrea Mori
Prossimo Seminario
Giovedì 16 Gennaio 2025
Ore 11:30 -- Aula 5
Andrea Conti
(Un. Heidelberg)
Bogomolov property for Galois representations
with big local image
Abstract. An algebraic extension of Q is said to have the Bogomolov property if the absolute logarithmic Weil height of its non-torsion elements is uniformly bounded from below. Given a continuous representation ρ of the absolute Galois group G_Q, one can ask whether the field fixed by ker(ρ) has the Bogomolov property (in short, we say that ρ has (B)). In a joint work with Lea Terracini, we prove that, if ρ : G_Q--->GL_N(Z_p) maps an inertia subgroup at p surjectively onto an open subgroup of GL_N(Z_p), then ρ has (B). More generally, we show that if the image of a decomposition group at $p$ is open in the image of G_Q, and a certain condition on the center of the image is satisfied, then ρ has (B). In particular, no assumption on the modularity of ρ is needed, contrary to previous work of Habegger and Amoroso—Terracini.
Calendario Generale:
In rosso i seminari futuri.
16 Gennaio 2025, A. Conti (Heidelberg), Bogomolov property for Galois representations with big local image.
13 Novembre 2024; F. Cioffi (Napoli), Cohen-Macaulay, Gorenstein and complete intersection conditions by marked bases on Hilbert schemes.
[Mathlab] 30 Ottobre 2024, Y. Bugeaud (Strasbourg), On the decimal expansion of e.
1 Ottobre 2024, L. De Feo (IBM Zrich), The isogeny toolbox
28 Maggio 2024, F. Pellarin (Roma I), Some remarks on the factorization of the sine function
15 Maggio 2024, A. Conti (Luxembourg), Prime power congruences between Galois representations
11 Aprile 2024, M. Gran (Louvain-la-neuve), On the naturalness of Mal'tsev categories
15 Marzo 2024, J. Jenvrin (Grenoble), On the height of some generators of Galois extensions with big Galois groups